skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Taniguchi, Takashi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Strain modulation is a crucial way in engineering nanoscale materials. It is even more important for single photon emitters in layered materials, where strain can trap a delocalized exciton, leading to quantum emission. Herein, we apply strain by using the piezoelectric relaxor ferroelectric substrate. In addition to the strain-tuning of energy and polarization, we report on new observations, including the enhanced polarizability and tunable diamagnetic shift, from the charged localized excitons. As indicated from the polarization-resolved measurements, we attribute the formation of charged localized excitons to selenium vacancy defects. The shallow defect trap, supported by the value of g-factor, further allows for strain-modulation of the electron-hole overlap, hence resulting in the tunable diamagnetic shift. Our results provide a new perspective in integrating layered materials with functional substrates. The contrasting features observed from the charged localized excitons also signify the prospect of charged localized emitters for quantum science and technology. 
    more » « less
  2. We fabricate and measure electrically-gated tunnel junctions in which the insulating barrier is a sliding van der Waals ferroelectric made from parallel-stacked bilayer hexagonal boron nitride and the electrodes are single-layer graphene. Despite the nominally-symmetric tunnel-junction structure, these devices can exhibit substantial electroresistance upon reversing the ferroelectric polarization. The magnitude and sign of tunneling electroresistance are tunable by bias and gate voltage. We show that this behavior can be understood within a simple tunneling model that takes into account the quantum capacitance of the graphene electrodes, so that the tunneling densities of states in the electrodes are separately modified as a function of bias and gate voltage. 
    more » « less
  3. Abstract Twisted transition metal dichalcogenide (TMD) bilayers have enabled the discovery of superconductivity, ferromagnetism, correlated insulators, and a series of new topological phases of matter. However, the connection between these electronic phases of matter and the underlying band structure singularities has remained largely unexplored. Here, combining magnetic circular dichroism and exciton sensing measurements, we investigate the influence of a van Hove singularity (vHS) on the correlated phases in bilayer WSe2with twist angle between 2 and 3 degrees. By tuning the vHS across the Fermi level using electric and magnetic fields, we observe Stoner ferromagnetism below moiré lattice filling one and Chern insulators at filling one. The experimental observations are supported by the continuum model band structure calculations. Our results highlight the prospect of engineering electronic phases of matter in moiré materials by tunable van Hove singularities. 
    more » « less
  4. Abstract AB-stacked bilayer graphene has emerged as a fascinating yet simple platform for exploring macroscopic quantum phenomena of correlated electrons. Under large electric displacement fields and near low-density van-Hove singularities, it exhibits a phase with features consistent with Wigner crystallization, including negative dR/dT and nonlinear bias behavior. However, direct evidence for the emergence of an electron crystal at zero magnetic field remains elusive. Here, we explore low-frequency noise consistent with depinning and sliding of a Wigner crystal or solid. At large magnetic fields, we observe enhanced noise at low bias current and a frequency-dependent response characteristic of depinning and sliding, consistent with earlier scanning tunnelling microscopy studies confirming Wigner crystallization in the fractional quantum Hall regime. At zero magnetic field, we detect pronounced AC noise whose peak frequency increases linearly with applied DC current—indicative of collective electron motion. These transport signatures pave the way toward confirming an anomalous Hall crystal. 
    more » « less
  5. Abstract The construction of thin film heterostructures has been a widely successful archetype for fabricating materials with emergent physical properties. This strategy is of particular importance for the design of multilayer magnetic architectures in which direct interfacial spin-spin interactions between magnetic phases in dissimilar layers lead to emergent and controllable magnetic behavior. However, crystallographic incommensurability and atomic-scale interfacial disorder can severely limit the types of materials amenable to this strategy, as well as the performance of these systems. Here, we demonstrate a method for synthesizing heterostructures comprising magnetic intercalation compounds of transition metal dichalcogenides (TMDs), through directed topotactic reaction of the TMD with a metal oxide. The mechanism of the intercalation reaction enables thermally initiated intercalation of the TMD from lithographically patterned oxide films, giving access to a family of multi-component magnetic architectures through the combination of deterministic van der Waals assembly and directed intercalation chemistry. 
    more » « less