skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Taniguchi, Takashi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. Free, publicly-accessible full text available August 11, 2026
  3. Abstract Graphene is a privileged 2D platform for hosting confined light-matter excitations known as surface plasmon polaritons (SPPs), as it possesses low intrinsic losses and a high degree of optical confinement. However, the isotropic nature of graphene limits its ability to guide and focus SPPs, making it less suitable than anisotropic elliptical and hyperbolic materials for polaritonic lensing and canalization. Here, we present graphene/CrSBr as an engineered 2D interface that hosts highly anisotropic SPP propagation across mid-infrared and terahertz energies. Using scanning tunneling microscopy, scattering-type scanning near-field optical microscopy, and first-principles calculations, we demonstrate mutual doping in excess of 1013 cm–2holes/electrons between the interfacial layers of graphene/CrSBr. SPPs in graphene activated by charge transfer interact with charge-induced electronic anisotropy in the interfacial doped CrSBr, leading to preferential SPP propagation along the quasi-1D chains that compose each CrSBr layer. This multifaceted proximity effect both creates SPPs and endows them with anisotropic propagation lengths that differ by an order-of-magnitude between the in-plane crystallographic axes of CrSBr. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  4. Free, publicly-accessible full text available June 9, 2026
  5. Free, publicly-accessible full text available April 15, 2026
  6. Free, publicly-accessible full text available June 3, 2026
  7. Free, publicly-accessible full text available July 1, 2026
  8. Abstract Spin-orbit coupling (SOC) and electron-electron interaction can mutually influence each other and give rise to a plethora of intriguing phenomena in condensed matter systems. In pristine bilayer graphene (BLG), which has weak SOC, intrinsic Lifshitz transitions and concomitant van-Hove singularities lead to the emergence of many-body correlated phases. Layer-selective SOC can be proximity induced by adding a layer of tungsten diselenide (WSe2) on its one side. By applying an electric displacement field, the system can be tuned across a spectrum wherein electronic correlation, SOC, or a combination of both dominates. Our investigations reveal an intricate phase diagram of proximity-induced SOC-selective BLG. Not only does this phase diagram include those correlated phases reminiscent of SOC-free doped BLG, but it also hosts unique SOC-induced states allowing a compelling measurement of valleyg-factor and a correlated insulator at charge neutrality, thereby showcasing the remarkable tunability of the interplay between interaction and SOC in WSe2enriched BLG. 
    more » « less
    Free, publicly-accessible full text available May 28, 2026
  9. Free, publicly-accessible full text available May 28, 2026